Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

نویسندگان

  • Josef Köck
  • Christine Rösler
  • Jing-Jing Zhang
  • Hubert E. Blum
  • Michael Nassal
  • Christian Thoma
چکیده

Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duck Hepatitis B Virus cccDNA Amplification Efficiency in Natural Infection Is Regulated by Virus Secretion Efficiency

Previous mutation based studies showed that ablating synthesis of viral envelope proteins led to elevated hepadnaviral covalently closed circular DNA (cccDNA) amplification, but it remains unknown how cccDNA amplification is regulated in natural hepadnaviral infection because of a lack of research system. In this study we report a simple procedure to prepare two identical duck hepatitis B virus...

متن کامل

Hepatitis B infection: review article

Hepatitis B virus (HBV) is an etiological agent of hepatitis B infection. Hepatitis B is a life-threatening disease that affects the liver. The clinical outcomes of the disease are varied from asymptomatic disease to serious complication such as cirrhosis and hepatocellular carcinoma (HCC). Despite availability of the vaccine and appropriate treatment, hepatitis B infection still remains a majo...

متن کامل

Therapeutic Direction and Issues Regarding HBV Infection

With up to 400 million affected people worldwide, chronic hepatitis B virus (HBV) infection is still a major health care problem. During the last decade, several novel therapeutic approaches have been developed and evaluated. In most regions of the world, interferon-α (IFN-α), and nucleos(t)ide analogues are currently approved. Despite major improvements, none of the existing therapies is optim...

متن کامل

Evaluation of transcriptional efficiency of hepatitis B virus covalently closed circular DNA by reverse transcription-PCR combined with the restriction enzyme digestion method.

Virus persistence in chronic hepatitis B patients is due to the sustaining level of covalently closed circular DNA (cccDNA) within the nuclei of infected hepatocytes. In this study, we used a modified 1.3-fold hepatitis B virus (HBV) genome, with a BclI genetic marker embedded in the redundancy region, to examine the transcriptional activity of cccDNA and the effect of the HBx protein on transc...

متن کامل

Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation.

Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is formed by conversion of capsid-associated relaxed circular DNA (rcDNA) via unknown mechanisms and exists in the nucleus of the infected hepatocyte as a minichromosome that serves as the transcription template for viral RNAs. To study the molecular pathway of cccDNA formation and its regulation by viral and cellular factors, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010